Unsupervised deep representation learning for motor fault diagnosis by mutual information maximization
Dengyu Xiao (),
Chengjin Qin (),
Honggan Yu,
Yixiang Huang () and
Chengliang Liu
Additional contact information
Dengyu Xiao: Shanghai Jiao Tong University
Chengjin Qin: Shanghai Jiao Tong University
Honggan Yu: Shanghai Jiao Tong University
Yixiang Huang: Shanghai Jiao Tong University
Chengliang Liu: Shanghai Jiao Tong University
Journal of Intelligent Manufacturing, 2021, vol. 32, issue 2, No 4, 377-391
Abstract:
Abstract Data-driven deep learning technology has gained many achievements in the field of motor fault diagnosis and prognostics. However, the application objects of those previous studies are commonly limited to the faulty data sharing the similar distribution under unvarying stable working condition. Unfortunately, this limitation is nearly invalid in the real-world scenario, where the working condition is complicated and changes invariably, resulting in the unfavourable situation that the deep representation learning methods of the previous studies always fail in extracting the effective representations for fault diagnosis in real applications. To tackle this issue, inspired by f-divergence estimation, this work takes a different route and proposes an unsupervised deep representation learning approach, named Deep Mutual Information Maximization (DMIM), using variational divergence estimation approach to maximize mutual information (MI) between the input and output of a deep neural network. Meanwhile the representation distribution is automatically tuned by matching to a prior distribution with the same philosophy of Variational Autoencoder. Opposite to previous works which learn representations basically with supervised feedback regulation or unsupervised reconstruction, the proposed unsupervised MI maximization framework aims to make representational characteristics like independence play a bigger role to capture the most unique representations. To verify the effectiveness of our proposal, faulty motor data from the motor tests under European driving cycle for simulating the real working scenario, are collected for validation. It turns out that DMIM outperforms many popular unsupervised and fully-supervised learning methods. It opens new avenues for unsupervised learning of representations for motor fault diagnosis.
Keywords: Motor fault diagnosis; Unsupervised deep learning; Deep representations; Mutual information (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s10845-020-01577-y Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:joinma:v:32:y:2021:i:2:d:10.1007_s10845-020-01577-y
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10845
DOI: 10.1007/s10845-020-01577-y
Access Statistics for this article
Journal of Intelligent Manufacturing is currently edited by Andrew Kusiak
More articles in Journal of Intelligent Manufacturing from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().