EconPapers    
Economics at your fingertips  
 

Weld defect classification in radiographic images using unified deep neural network with multi-level features

Lu Yang () and Hongquan Jiang ()
Additional contact information
Lu Yang: Xi’an Jiaotong University
Hongquan Jiang: Xi’an Jiaotong University

Journal of Intelligent Manufacturing, 2021, vol. 32, issue 2, No 9, 459-469

Abstract: Abstract Deep neural network (DNN) exhibits state-of-the-art performance in many fields including weld defect classification. However, there is still a large room for improving the classification performance over the generic DNN models. In this paper, a unified deep neural network with multi-level features is proposed for weld defect classification. Firstly, we define 11 weld defect features as inputs of our proposed classification model. Not limited to geometric and intensity features, 4 features based on the intensity contrast between weld defect and its background are proposed in this paper. Secondly, we construct a novel deep learning framework: a unified deep neural network, where multi-level features of each hidden layer are fused by the last hidden layer to predict the type of weld defect comprehensively. In addition, we investigate pre-training and fine-turning strategies to get better generalization performance with small dataset. Comparing with other classification methods like SVM and generic DNN model, our framework takes full advantage of multi-level features extracted from each hidden layer, an outstanding performance is shown where the classification accuracy is improved by 3.18% and 4.33% on the test dataset, to reach 91.36%.

Keywords: Non-destructive testing; Weld defect classification; Deep neural network; Multi-level features fusion; Stacked auto-encoder (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://link.springer.com/10.1007/s10845-020-01581-2 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:joinma:v:32:y:2021:i:2:d:10.1007_s10845-020-01581-2

Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10845

DOI: 10.1007/s10845-020-01581-2

Access Statistics for this article

Journal of Intelligent Manufacturing is currently edited by Andrew Kusiak

More articles in Journal of Intelligent Manufacturing from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:joinma:v:32:y:2021:i:2:d:10.1007_s10845-020-01581-2