EconPapers    
Economics at your fingertips  
 

Multiple time-series convolutional neural network for fault detection and diagnosis and empirical study in semiconductor manufacturing

Chia-Yu Hsu () and Wei-Chen Liu
Additional contact information
Chia-Yu Hsu: National Taipei University of Technology
Wei-Chen Liu: Yuan Ze University

Journal of Intelligent Manufacturing, 2021, vol. 32, issue 3, No 12, 823-836

Abstract: Abstract The development of information technology and process technology have been enhanced the rapid changes in high-tech products and smart manufacturing, specifications become more sophisticated. Large amount of sensors are installed to record equipment condition during the manufacturing process. In particular, the characteristics of sensor data are temporal. Most the existing approaches for time series classification are not applicable to adaptively extract the effective feature from a large number of sensor data, accurately detect the fault, and provide the assignable cause for fault diagnosis. This study aims to propose a multiple time-series convolutional neural network (MTS-CNN) model for fault detection and diagnosis in semiconductor manufacturing. This study incorporates data augmentation with sliding window to generate amounts of subsequences and thus to enhance the diversity and avoid over-fitting. The key features of equipment sensor can be learned automatically through stacked convolution-pooling layers. The importance of each sensor is also identified through the diagnostic layer in the proposed MTS-CNN. An empirical study from a wafer fabrication was conducted to validate the proposed MTS-CNN and compare the performance among the other multivariate time series classification methods. The experimental results demonstrate that the MTS-CNN can accurately detect the fault wafers with high accuracy, recall and precision, and outperforms than other existing multivariate time series classification methods. Through the output value of the diagnostic layer in MTS-CNN, we can identify the relationship between each fault and different sensors and provider valuable information to associate the excursion for fault diagnosis.

Keywords: Fault detection and diagnosis; Time series classification; Deep learning; Convolutional neural network; Smart manufacturing (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)

Downloads: (external link)
http://link.springer.com/10.1007/s10845-020-01591-0 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:joinma:v:32:y:2021:i:3:d:10.1007_s10845-020-01591-0

Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10845

DOI: 10.1007/s10845-020-01591-0

Access Statistics for this article

Journal of Intelligent Manufacturing is currently edited by Andrew Kusiak

More articles in Journal of Intelligent Manufacturing from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:joinma:v:32:y:2021:i:3:d:10.1007_s10845-020-01591-0