EconPapers    
Economics at your fingertips  
 

Mathematical modeling and a hybrid evolutionary algorithm for process planning

Qihao Liu, Xinyu Li () and Liang Gao
Additional contact information
Qihao Liu: Huazhong University of Science and Technology
Xinyu Li: Huazhong University of Science and Technology
Liang Gao: Huazhong University of Science and Technology

Journal of Intelligent Manufacturing, 2021, vol. 32, issue 3, No 10, 797 pages

Abstract: Abstract Process planning is an essential part of the manufacturing system linking the designing and practical manufacturing. However, the reported process planning models are too simple to describe all characteristics because of the complexity of process planning. Therefore, a new mixed-integer linear programming (MILP) mathematical model is established based on OR-node of the network graph. In the model, the linear expression of the OR-node controlling function as well as three types of changing costs are first established. Beside, considering the OR-node selection state in the encoding and decoding method, a hybrid evolutionary algorithm (HEA) is designed to combine a genetic algorithm with a simulated annealing algorithm. The tournament selection method is adopted in the proposed HEA, and the discussion on the tournament size is conducted on the open problems to make the algorithm designing more reasonable and scientific. The HEA and the new MILP model are both tested on series of numerical experiments which are carried on the existing benchmarks as well as some randomly generated cases. The behavior of both two methods can verify their effectiveness and superiority successfully.

Keywords: Process planning; Mixed-integer linear programming model; Hybrid evolutionary algorithm; Benchmark (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://link.springer.com/10.1007/s10845-020-01703-w Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:joinma:v:32:y:2021:i:3:d:10.1007_s10845-020-01703-w

Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10845

DOI: 10.1007/s10845-020-01703-w

Access Statistics for this article

Journal of Intelligent Manufacturing is currently edited by Andrew Kusiak

More articles in Journal of Intelligent Manufacturing from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:joinma:v:32:y:2021:i:3:d:10.1007_s10845-020-01703-w