EconPapers    
Economics at your fingertips  
 

Skill transfer support model based on deep learning

Kung-Jeng Wang (), Diwanda Ageng Rizqi () and Hong-Phuc Nguyen ()
Additional contact information
Kung-Jeng Wang: National Taiwan University of Science and Technology
Diwanda Ageng Rizqi: National Taiwan University of Science and Technology
Hong-Phuc Nguyen: Can Tho University

Journal of Intelligent Manufacturing, 2021, vol. 32, issue 4, No 13, 1129-1146

Abstract: Abstract The paradigm shift toward Industry 4.0 is not solely completed by enabling smart machines in a factory but also by facilitating human capability. Refinement of work processes and introduction of new training approaches are necessary to support efficient human skill development. This study proposes a new skill transfer support model in a manufacturing scenario. The proposed model develops two types of deep learning as the backbone: a convolutional neural network (CNN) for action recognition and a faster region-based CNN (R-CNN) for object detection. A case study using toy assembly is conducted utilizing two cameras with different angles to evaluate the performance of the proposed model. The accuracy for CNN and faster R-CNN for the target job reached 94.5% and 99%, respectively. A junior operator can be guided by the proposed model given that flexible assembly tasks have been constructed on the basis of a skill representation. In terms of theoretical contribution, this study integrated two deep learning models that can simultaneously recognize the action and detect the object. The present study facilitates skill transfer in manufacturing systems by adapting or learning new skills for junior operators.

Keywords: Deep learning; Convolutional neural network; Faster region-based convolutional neural network; Human–machine interaction; Skill transfer (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://link.springer.com/10.1007/s10845-020-01606-w Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:joinma:v:32:y:2021:i:4:d:10.1007_s10845-020-01606-w

Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10845

DOI: 10.1007/s10845-020-01606-w

Access Statistics for this article

Journal of Intelligent Manufacturing is currently edited by Andrew Kusiak

More articles in Journal of Intelligent Manufacturing from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:joinma:v:32:y:2021:i:4:d:10.1007_s10845-020-01606-w