EconPapers    
Economics at your fingertips  
 

A novel normalized recurrent neural network for fault diagnosis with noisy labels

Xiaoyin Nie () and Gang Xie ()
Additional contact information
Xiaoyin Nie: Taiyuan University of Science and Technology
Gang Xie: Taiyuan University of Science and Technology

Journal of Intelligent Manufacturing, 2021, vol. 32, issue 5, No 3, 1288 pages

Abstract: Abstract The early fault diagnosis is a kind of important technology to ensure the normal and reliable operation of wind turbines. However, due to the potential presence of noisy labels in health condition dataset and the weakly explanation of the deep neural network decisions, the performance of fault diagnosis is severely limited. In this paper, a framework called normalized recurrent neural network (NRNN) is proposed for noisy label fault diagnosis, in which the normalized long short-term memory is used to improve the training process and the forward crossentropy loss is introduced to handle the negative effect of noisy labels. The effectiveness and superiority of the proposed framework are verified by four datasets with different noisy label proportions. Meanwhile, the layer-wise relevance propagation algorithm is applied to explore the decision of framework and by visualizing the relevances of input samples to framework decisions, the NRNN does not treat samples equally and prefers signal peaks for classification decisions.

Keywords: Recurrent neural network; Deep neural network; Noisy labels; Fault diagnosis; Layer-wise relevance propagation (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://link.springer.com/10.1007/s10845-020-01608-8 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:joinma:v:32:y:2021:i:5:d:10.1007_s10845-020-01608-8

Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10845

DOI: 10.1007/s10845-020-01608-8

Access Statistics for this article

Journal of Intelligent Manufacturing is currently edited by Andrew Kusiak

More articles in Journal of Intelligent Manufacturing from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:joinma:v:32:y:2021:i:5:d:10.1007_s10845-020-01608-8