Demand forecasting application with regression and artificial intelligence methods in a construction machinery company
Adnan Aktepe (),
Emre Yanık () and
Süleyman Ersöz ()
Additional contact information
Adnan Aktepe: Kırıkkale University
Emre Yanık: ASSAN ASP Machinery
Süleyman Ersöz: Kırıkkale University
Journal of Intelligent Manufacturing, 2021, vol. 32, issue 6, No 6, 1587-1604
Abstract:
Abstract Demand forecasts are used as input to planning activities and play an important role in the management of fundamental operations. Accurate demand forecasting is an important information for many organizations. It provides information for each stage of inventory management. In this study, multiple linear regression analysis, multiple nonlinear regression analysis, artificial neural networks and support vector regression were applied in a production facility that produces spare parts of construction machinery. The aim of the study is to forecast the number of spare parts requested in the future period by the customer as close as possible. As the input variables in the developed models, the sales amounts of the past years belonging to the manifold product group, which is one of the important spare parts of the construction machinery, number of construction machines sold in the world, USD exchange rate and monthly impact rate are used as input variables. The inputs of the model are designed according to construction machinery sector. In the model, monthly impact rate enables us to create more robust model. In addition, the estimation results have high accuracy by systematic parameter design of artificial intelligence methods. The data of the 9 years (from 2010 to 2018) were used in the application. Demand forecasts were conducted for 2018 to compare actual values. In forecasts, artificial neural network and support vector regression produced better results than regression methods. In addition, it was found that support vector regression forecasting produced better results in comparison to artificial neural network. __________________________________________________________________________________________
Keywords: Construction machinery sector; Demand forecasting; Support vector regression; Artificial neural networks; Multiple linear regression; Multiple nonlinear regression (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s10845-021-01737-8 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:joinma:v:32:y:2021:i:6:d:10.1007_s10845-021-01737-8
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10845
DOI: 10.1007/s10845-021-01737-8
Access Statistics for this article
Journal of Intelligent Manufacturing is currently edited by Andrew Kusiak
More articles in Journal of Intelligent Manufacturing from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().