EconPapers    
Economics at your fingertips  
 

Welding quality evaluation of resistance spot welding based on a hybrid approach

Dawei Zhao (), Mikhail Ivanov (), Yuanxun Wang and Wenhao Du
Additional contact information
Dawei Zhao: South Ural State University
Mikhail Ivanov: South Ural State University
Yuanxun Wang: Huazhong University of Science and Technology
Wenhao Du: Hunan Institute of Engineering

Journal of Intelligent Manufacturing, 2021, vol. 32, issue 7, No 3, 1819-1832

Abstract: Abstract In this investigation, the welding quality of TC2 titanium alloy with 0.4 mm thickness was predicted using two regression models and an artificial neural network model. The welding current and the voltage between the upper and lower electrodes were obtained using the Rogowski coil and a line voltage sensor. And then the variations of the dynamic resistance curve and the effects of the welding current and welding time on the dynamic resistance signals were investigated. The principal component analysis (PCA) was employed to eliminate the redundant information in the dynamic resistance curve and characterize the shape information of the entire dynamic resistance. A linear regression model quantifying the relationship between the nugget diameter and the principal components was established. The results of the analysis of variance indicated that the performance of this regression equation was very good. Some statistical characteristics of the dynamic resistance signal were also extracted to investigate the relationship between the nugget diameter and dynamic resistance. The results indicated that the regression model established based on the PCA technique was much more robust than the model developed on the basis of the features manually extracted from the dynamic resistance signal. The neural network model was also used to predict the nugget diameter of the welding joints utilizing the extracted features. The performances of the three established prediction models were compared and their behavioral discrepancies were also investigated. The PCA technique not only can minimize the prior assumptions about the certain shape of the dynamic resistance curve and remove the subjective factors caused by the manual extraction method, but it also can assess and monitor the welding quality with a good level of reliability.

Keywords: Welding quality; Dynamic resistance; Online monitoring (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s10845-020-01627-5 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:joinma:v:32:y:2021:i:7:d:10.1007_s10845-020-01627-5

Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10845

DOI: 10.1007/s10845-020-01627-5

Access Statistics for this article

Journal of Intelligent Manufacturing is currently edited by Andrew Kusiak

More articles in Journal of Intelligent Manufacturing from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:joinma:v:32:y:2021:i:7:d:10.1007_s10845-020-01627-5