A steel surface defect inspection approach towards smart industrial monitoring
Ruiyang Hao (),
Bingyu Lu (),
Ying Cheng (),
Xiu Li () and
Biqing Huang ()
Additional contact information
Ruiyang Hao: Tsinghua University
Bingyu Lu: Tsinghua University
Ying Cheng: Beihang University
Xiu Li: Tsinghua University
Biqing Huang: Tsinghua University
Journal of Intelligent Manufacturing, 2021, vol. 32, issue 7, No 4, 1833-1843
Abstract:
Abstract With the advance in Industry 4.0, smart industrial monitoring has been proposed to timely discover faults and defects in industrial processes. Steel is widely used in manufacturing equipment, and steel surface defect inspection is of great significance to the normal operation of steel equipment in manufacturing workshops. In steel defect inspection systems, industrial inspection robots generate images via scanning steel surface, and processors perform surface defect inspection algorithms on images. We focus on applying advanced object detection techniques to surface defect inspection algorithm for sheet steel. In the proposed steel surface defect inspection model, a deformable convolution enhanced backbone network firstly extracts complex features from multi-shape steel surface defects. Then the feature fusion network with balanced feature pyramid generates high-quality multi-resolution feature maps for the inspection of multi-size defects. Finally, detector network achieves the localization and classification of steel surface defects. The proposed model is evaluated on a typical steel surface defect dataset. Our model achieves 0.805 mAP, 0.144 higher than baseline models, and our model shows high efficiency in inference. Experiments are performed to reveal the effect of employed approaches, and results also show our model achieves a balance between inspection performance and inference efficiency.
Keywords: Defect inspection; Object detection; Smart industrial monitoring; Steel surface; Deep learning (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://link.springer.com/10.1007/s10845-020-01670-2 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:joinma:v:32:y:2021:i:7:d:10.1007_s10845-020-01670-2
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10845
DOI: 10.1007/s10845-020-01670-2
Access Statistics for this article
Journal of Intelligent Manufacturing is currently edited by Andrew Kusiak
More articles in Journal of Intelligent Manufacturing from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().