Quality 4.0: a review of big data challenges in manufacturing
Carlos A. Escobar (),
Megan E. McGovern and
Ruben Morales-Menendez
Additional contact information
Carlos A. Escobar: General Motors
Megan E. McGovern: General Motors
Ruben Morales-Menendez: Tecnológico de Monterrey
Journal of Intelligent Manufacturing, 2021, vol. 32, issue 8, No 16, 2319-2334
Abstract:
Abstract Industrial big data and artificial intelligence are propelling a new era of manufacturing, smart manufacturing. Although these driving technologies have the capacity to advance the state of the art in manufacturing, it is not trivial to do so. Current benchmarks of quality, conformance, productivity, and innovation in industrial manufacturing have set a very high bar for machine learning algorithms. A new concept has recently appeared to address this challenge: Quality 4.0. This name was derived from the pursuit of performance excellence during these times of potentially disruptive digital transformation. The hype surrounding artificial intelligence has influenced many quality leaders take an interest in deploying a Quality 4.0 initiative. According to recent surveys, however, 80–87% of the big data projects never generate a sustainable solution. Moreover, surveys have indicated that most quality leaders do not have a clear vision about how to create value of out these technologies. In this manuscript, the process monitoring for quality initiative, Quality 4.0, is reviewed. Then four relevant issues are identified (paradigm, project selection, process redesign and relearning problems) that must be understood and addressed for successful implementation. Based on this study, a novel 7-step problem solving strategy is introduced. The proposed strategy increases the likelihood of successfully deploying this Quality 4.0 initiative.
Keywords: Quality 4.0; Quality control; Manufacturing systems; Artificial intelligence; Big data (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s10845-021-01765-4 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:joinma:v:32:y:2021:i:8:d:10.1007_s10845-021-01765-4
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10845
DOI: 10.1007/s10845-021-01765-4
Access Statistics for this article
Journal of Intelligent Manufacturing is currently edited by Andrew Kusiak
More articles in Journal of Intelligent Manufacturing from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().