EconPapers    
Economics at your fingertips  
 

Enhanced Equilibrium Optimizer algorithm applied in job shop scheduling problem

Ying Sun, Jeng-Shyang Pan, Pei Hu and Shu-Chuan Chu
Additional contact information
Ying Sun: Shandong University of Science and Technology
Jeng-Shyang Pan: Shandong University of Science and Technology
Pei Hu: Shandong University of Science and Technology
Shu-Chuan Chu: Shandong University of Science and Technology

Journal of Intelligent Manufacturing, 2023, vol. 34, issue 4, No 7, 1639-1665

Abstract: Abstract The Equilibrium Optimizer (EO) algorithm is a new meta-heuristic algorithm that uses an equilibrium pool and candidates to update particles (solutions). EO algorithm not only has strong exploitation and exploration capabilities but also avoids falling into the local optimum. The reason why EO has these advantages is because of the existence of “generation rate”. This paper proposes an Enhanced Equilibrium Optimizer (EEO) Algorithm based on three communication strategies to solve the Job Shop Scheduling Problem (JSSP). To prove the accuracy of the algorithm, this paper uses 28 benchmark functions for testing. At the same time, the Enhanced Equilibrium Optimizer (EEO1, EEO2, EEO3) Algorithms are compared with the existing optimization methods, including Grey Wolf Optimizer (GWO), Multi-Version Optimizer (MVO), Differential Evolution (DE), Whale Optimization Algorithm (WOA). Experiments show that the EO algorithm is significantly better than GWO, MVO, DE, WOA. EO algorithm is mainly used to optimize continuous problems, but JSSP is a discrete application, so the standard equilibrium optimizer algorithm needs to be discretized. This paper extends the enhanced equilibrium optimizer algorithm and adds discretization processing to JSSP. The algorithm is also applied for the job shop scheduling problem by discretization and is compared with the three improvement methods of EEO. Experimental results prove that the algorithm has made significant improvements in solving JSSP.

Keywords: Equilibrium Optimizer; Discrete; Job shop scheduling problem; Meta-heuristic algorithm (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s10845-021-01899-5 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:joinma:v:34:y:2023:i:4:d:10.1007_s10845-021-01899-5

Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10845

DOI: 10.1007/s10845-021-01899-5

Access Statistics for this article

Journal of Intelligent Manufacturing is currently edited by Andrew Kusiak

More articles in Journal of Intelligent Manufacturing from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:joinma:v:34:y:2023:i:4:d:10.1007_s10845-021-01899-5