EconPapers    
Economics at your fingertips  
 

Fault diagnosis and self-healing for smart manufacturing: a review

Joma Aldrini (), Ines Chihi () and Lilia Sidhom ()
Additional contact information
Joma Aldrini: University of Luxembourg
Ines Chihi: University of Luxembourg
Lilia Sidhom: University of Carthage

Journal of Intelligent Manufacturing, 2024, vol. 35, issue 6, No 2, 2473 pages

Abstract: Abstract Manufacturing systems are becoming more sophisticated and expensive, particularly with the development of the intelligent industry. The complexity of the architecture and concept of Smart Manufacturing (SM) makes it vulnerable to several faults and failures that impact the entire behavior of the manufacturing system. It is crucial to find and detect any potential anomalies and faults as soon as possible because of the low tolerance for performance deterioration, productivity decline, and safety issues. To overcome these issues, a variety of approaches exist in the literature. However, the multitude of techniques make it difficult to choose the appropriate method in relation to a given context. This paper proposes a new architecture for a conceptual model of intelligent fault diagnosis and self-healing for smart manufacturing systems. Based on this architecture, a review method for the different approaches, sub-approaches and methods used to develop a Fault Detection and Diagnosis (FDD) and Self-Healing-Fault-Tolerant (SH-FT) strategy dedicated to smart manufacturing is defined. Moreover, this paper reviews and analyzes more than 256 scientific articles on fault diagnosis and self-healing approaches and their applications in SM in the last decade. Finally, promising research directions in the field of resilient smart manufacturing are highlighted.

Keywords: Smart manufacturing; Fault diagnosis; Fault detection; Self-healing; Fault-tolerant control (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s10845-023-02165-6 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:joinma:v:35:y:2024:i:6:d:10.1007_s10845-023-02165-6

Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10845

DOI: 10.1007/s10845-023-02165-6

Access Statistics for this article

Journal of Intelligent Manufacturing is currently edited by Andrew Kusiak

More articles in Journal of Intelligent Manufacturing from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-04-20
Handle: RePEc:spr:joinma:v:35:y:2024:i:6:d:10.1007_s10845-023-02165-6