Complementarity Enhanced Nash’s Mappings and Differentiable Homotopy Methods to Select Perfect Equilibria
Yiyin Cao (),
Chuangyin Dang () and
Yabin Sun ()
Additional contact information
Yiyin Cao: City University of Hong Kong
Chuangyin Dang: City University of Hong Kong
Yabin Sun: Shanxi University
Journal of Optimization Theory and Applications, 2022, vol. 192, issue 2, No 6, 533-563
Abstract:
Abstract To extend the concept of subgame perfect equilibrium to an extensive-form game with imperfect information but perfect recall, Selten (Int J Game Theory 4:25–55, 1975) formulated the notion of perfect equilibrium and attained its existence through the agent normal-form representation of the extensive-form game. As a strict refinement of Nash equilibrium, a perfect equilibrium always yields a sequential equilibrium. The selection of a perfect equilibrium thus plays an essential role in the applications of game theory. Moreover, a different procedure may select a different perfect equilibrium. The existence of Nash equilibrium was proved by Nash (Ann Math 54:289–295, 1951) through the construction of an elegant continuous mapping and an application of Brouwer’s fixed point theorem. This paper intends to enhance Nash’s mapping to select a perfect equilibrium. By incorporating the complementarity condition into the equilibrium system with Nash’s mapping through an artificial game, we successfully eliminate the nonnegativity constraints on a mixed strategy profile imposed by Nash’s mapping. In the artificial game, each player solves against a given mixed strategy profile a strictly convex quadratic optimization problem. This enhancement enables us to derive differentiable homotopy systems from Nash’s mapping and establish the existence of smooth paths for selecting a perfect equilibrium. The homotopy methods start from an arbitrary totally mixed strategy profile and numerically trace the smooth paths to a perfect equilibrium. Numerical results show that the methods are numerically stable and computationally efficient in search of a perfect equilibrium and outperform the existing differentiable homotopy method.
Keywords: Game theory; Nash’s mapping; Perfect equilibrium; Differentiable homotopy method; Variational inequalities; 91-08; 91A11 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s10957-021-01977-x Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:joptap:v:192:y:2022:i:2:d:10.1007_s10957-021-01977-x
Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/10957/PS2
DOI: 10.1007/s10957-021-01977-x
Access Statistics for this article
Journal of Optimization Theory and Applications is currently edited by Franco Giannessi and David G. Hull
More articles in Journal of Optimization Theory and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().