On Strongly Quasiconvex Functions: Existence Results and Proximal Point Algorithms
F. Lara ()
Additional contact information
F. Lara: Universidad de Tarapacá
Journal of Optimization Theory and Applications, 2022, vol. 192, issue 3, No 5, 911 pages
Abstract:
Abstract We prove that every strongly quasiconvex function is 2-supercoercive (in particular, coercive). Furthermore, we investigate the usual properties of proximal operators for strongly quasiconvex functions. In particular, we prove that the set of fixed points of the proximal operator coincides with the unique minimizer of a lower semicontinuous strongly quasiconvex function. As a consequence, we implement the proximal point algorithm for finding the unique solution of the minimization problem of a strongly quasiconvex function by using a positive sequence of parameters bounded away from 0 and, in particular, we revisit the general quasiconvex case. Moreover, a new characterization for convex functions is derived from this analysis. Finally, an application for a strongly quasiconvex function which is neither convex nor differentiable nor locally Lipschitz continuous is provided.
Keywords: Nonconvex optimization; Nonsmooth optimization; Strongly quasiconvex functions; Existence of solutions; Proximal point algorithms (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://link.springer.com/10.1007/s10957-021-01996-8 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:joptap:v:192:y:2022:i:3:d:10.1007_s10957-021-01996-8
Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/10957/PS2
DOI: 10.1007/s10957-021-01996-8
Access Statistics for this article
Journal of Optimization Theory and Applications is currently edited by Franco Giannessi and David G. Hull
More articles in Journal of Optimization Theory and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().