EconPapers    
Economics at your fingertips  
 

The Stochastic Bilevel Continuous Knapsack Problem with Uncertain Follower’s Objective

Christoph Buchheim (), Dorothee Henke () and Jannik Irmai ()
Additional contact information
Christoph Buchheim: TU Dortmund University
Dorothee Henke: TU Dortmund University
Jannik Irmai: Dresden University of Technology

Journal of Optimization Theory and Applications, 2022, vol. 194, issue 2, No 7, 542 pages

Abstract: Abstract We consider a bilevel continuous knapsack problem where the leader controls the capacity of the knapsack, while the follower chooses a feasible packing maximizing his own profit. The leader’s aim is to optimize a linear objective function in the capacity and in the follower’s solution, but with respect to different item values. We address a stochastic version of this problem where the follower’s profits are uncertain from the leader’s perspective, and only a probability distribution is known. Assuming that the leader aims at optimizing the expected value of her objective function, we first observe that the stochastic problem is tractable as long as the possible scenarios are given explicitly as part of the input, which also allows to deal with general distributions using a sample average approximation. For the case of independently and uniformly distributed item values, we show that the problem is #P-hard in general, and the same is true even for evaluating the leader’s objective function. Nevertheless, we present pseudo-polynomial time algorithms for this case, running in time linear in the total size of the items. Based on this, we derive an additive approximation scheme for the general case of independently distributed item values, which runs in pseudo-polynomial time.

Keywords: Bilevel optimization; Stochastic optimization; Complexity (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://link.springer.com/10.1007/s10957-022-02037-8 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:joptap:v:194:y:2022:i:2:d:10.1007_s10957-022-02037-8

Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/10957/PS2

DOI: 10.1007/s10957-022-02037-8

Access Statistics for this article

Journal of Optimization Theory and Applications is currently edited by Franco Giannessi and David G. Hull

More articles in Journal of Optimization Theory and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:joptap:v:194:y:2022:i:2:d:10.1007_s10957-022-02037-8