EconPapers    
Economics at your fingertips  
 

An Accelerated Smoothing Newton Method with Cubic Convergence for Weighted Complementarity Problems

Jingyong Tang (), Jinchuan Zhou () and Hongchao Zhang ()
Additional contact information
Jingyong Tang: Xinyang Normal University
Jinchuan Zhou: Shandong University of Technology
Hongchao Zhang: Louisiana State University

Journal of Optimization Theory and Applications, 2023, vol. 196, issue 2, No 11, 665 pages

Abstract: Abstract Smoothing Newton methods, which usually inherit local quadratic convergence rate, have been successfully applied to solve various mathematical programming problems. In this paper, we propose an accelerated smoothing Newton method (ASNM) for solving the weighted complementarity problem (wCP) by reformulating it as a system of nonlinear equations using a smoothing function. In spirit, when the iterates are close to the solution set of the nonlinear system, an additional approximate Newton step is computed by solving one of two possible linear systems formed by using previously calculated Jacobian information. When a Lipschitz continuous condition holds on the gradient of the smoothing function at two checking points, this additional approximate Newton step can be obtained with a much reduced computational cost. Hence, ASNM enjoys local cubic convergence rate but with computational cost only comparable to standard Newton’s method at most iterations. Furthermore, a second-order nonmonotone line search is designed in ASNM to ensure global convergence. Our numerical experiments verify the local cubic convergence rate of ASNM and show that the acceleration techniques employed in ASNM can significantly improve the computational efficiency compared with some well-known benchmark smoothing Newton method.

Keywords: Nonlinear programming; Weighted complementarity problem; Accelerated smoothing Newton method; Nonmonotone line search; Cubic convergence (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s10957-022-02152-6 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:joptap:v:196:y:2023:i:2:d:10.1007_s10957-022-02152-6

Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/10957/PS2

DOI: 10.1007/s10957-022-02152-6

Access Statistics for this article

Journal of Optimization Theory and Applications is currently edited by Franco Giannessi and David G. Hull

More articles in Journal of Optimization Theory and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:joptap:v:196:y:2023:i:2:d:10.1007_s10957-022-02152-6