EconPapers    
Economics at your fingertips  
 

Proximal Stabilized Interior Point Methods and Low-Frequency-Update Preconditioning Techniques

Stefano Cipolla () and Jacek Gondzio ()
Additional contact information
Stefano Cipolla: The University of Edinburgh
Jacek Gondzio: The University of Edinburgh

Journal of Optimization Theory and Applications, 2023, vol. 197, issue 3, No 9, 1103 pages

Abstract: Abstract In this work, in the context of Linear and convex Quadratic Programming, we consider Primal Dual Regularized Interior Point Methods (PDR-IPMs) in the framework of the Proximal Point Method. The resulting Proximal Stabilized IPM (PS-IPM) is strongly supported by theoretical results concerning convergence and the rate of convergence, and can handle degenerate problems. Moreover, in the second part of this work, we analyse the interactions between the regularization parameters and the computational footprint of the linear algebra routines used to solve the Newton linear systems. In particular, when these systems are solved using an iterative Krylov method, we are able to show—using a new rearrangement of the Schur complement which exploits regularization—that general purposes preconditioners remain attractive for a series of subsequent IPM iterations. Indeed, if on the one hand a series of theoretical results underpin the fact that the approach here presented allows a better re-use of such computed preconditioners, on the other, we show experimentally that such (re)computations are needed only in a fraction of the total IPM iterations. The resulting regularized second order methods, for which low-frequency-update of the preconditioners are allowed, pave the path for an alternative class of second order methods characterized by reduced computational effort.

Keywords: Interior point methods; Proximal point methods; Regularized primal-dual methods; Convex quadratic programming; 65K05; 90C51; 90C06 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://link.springer.com/10.1007/s10957-023-02194-4 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:joptap:v:197:y:2023:i:3:d:10.1007_s10957-023-02194-4

Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/10957/PS2

DOI: 10.1007/s10957-023-02194-4

Access Statistics for this article

Journal of Optimization Theory and Applications is currently edited by Franco Giannessi and David G. Hull

More articles in Journal of Optimization Theory and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:joptap:v:197:y:2023:i:3:d:10.1007_s10957-023-02194-4