EconPapers    
Economics at your fingertips  
 

An Adaptive Distributionally Robust Optimization Approach for Optimal Sizing of Hybrid Renewable Energy Systems

Ali Keyvandarian () and Ahmed Saif
Additional contact information
Ali Keyvandarian: Dalhousie University
Ahmed Saif: Dalhousie University

Journal of Optimization Theory and Applications, 2024, vol. 203, issue 2, No 36, 2055-2082

Abstract: Abstract Hybrid renewable energy systems (HRESs) that integrate conventional and renewable energy generation and energy storage technologies represent a viable option to serve the energy demand of remote and isolated communities. A common way to capture the stochastic nature of demand and renewable energy supply in such systems is by using a small number of independent discrete scenarios. However, some information is inevitably lost when extracting these scenarios from historical data, thus introducing errors and biases to the design process. This paper proposes two frameworks, namely robust-stochastic optimization and distributionally robust optimization, that aim to hedge against the resulting uncertainty of scenario characterization and probability, respectively, in scenario-based HRES design approaches. Mathematical formulations are provided for the nominal, stochastic, robust-stochastic, distributional robust, and combined problems, and directly-solvable tractable reformulations are derived for the stochastic and the distributional robust cases. Furthermore, an exact column-and-constraint-generation algorithm is developed for the robust-stochastic and combined cases. Numerical results obtained from a realistic case study of a stand-alone solar-wind-battery-diesel HRES serving a small community in Northern Ontario, Canada reveal the performance advantage, in terms of both cost and utilization of renewable sources, of the proposed frameworks compared to classical deterministic and stochastic models, and their ability to mitigate the issue of information loss due to scenario reduction.

Keywords: Hybrid renewable energy systems; Distributionally robust optimization; Stochastic programming; Robust-stochastic optimization; Optimization under uncertainty (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s10957-024-02518-y Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:joptap:v:203:y:2024:i:2:d:10.1007_s10957-024-02518-y

Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/10957/PS2

DOI: 10.1007/s10957-024-02518-y

Access Statistics for this article

Journal of Optimization Theory and Applications is currently edited by Franco Giannessi and David G. Hull

More articles in Journal of Optimization Theory and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:joptap:v:203:y:2024:i:2:d:10.1007_s10957-024-02518-y