Stochastic programming approach for unidirectional quay crane scheduling problem with uncertainty
Shoufeng Ma (),
Hongming Li (),
Ning Zhu () and
Chenyi Fu ()
Additional contact information
Shoufeng Ma: Tianjin University
Hongming Li: Tianjin University
Ning Zhu: Tianjin University
Chenyi Fu: Tianjin University
Journal of Scheduling, 2021, vol. 24, issue 2, No 2, 137-174
Abstract:
Abstract Quay crane scheduling is a key aspect of container terminal operation, which can be regarded as a decision-making process with uncertainty. Each task involves stochastic loading and unloading operation times owing to the existence of uncertainty. In this study, we investigate the unidirectional quay crane scheduling problem for a stochastic processing time, which requires that all the quay cranes move in the same direction either from bow to stern, or vice versa, throughout the planning horizon. The problem is formulated as a two-stage stochastic mixed-integer programming model, where the binary first-stage decision variables correspond to the assignment of tasks to quay cranes, and the mixed-integer second-stage decision variables are related to the generation of detailed schedules. To make the model solvable, we develop an alternative equivalent reformulation with a special structure that involves binary variables in the first stage and continuous variables in the second stage. To solve this reformulated model, an integer L-shaped method is presented for small-size instances, and a simulated annealing algorithm is presented for large-size instances to obtain near-optimal solutions. Numerical experiments show that the integer L-shaped method and simulated annealing algorithm could efficiently solve the unidirectional quay crane scheduling problem with uncertainty. The results also indicate that the stochastic model has distinct advantages in terms of shortening the completion time of vessels and improving the service level of container terminals compared with the expected value problem solutions.
Keywords: Unidirectional quay crane scheduling; Uncertainty; Two-stage stochastic programming; Integer L-shaped method; Simulated annealing algorithm (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://link.springer.com/10.1007/s10951-020-00661-8 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:jsched:v:24:y:2021:i:2:d:10.1007_s10951-020-00661-8
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10951
DOI: 10.1007/s10951-020-00661-8
Access Statistics for this article
Journal of Scheduling is currently edited by Edmund Burke and Michael Pinedo
More articles in Journal of Scheduling from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().