On estimation of covariate-specific residual time quantiles under the proportional hazards model
Luis Alexander Crouch (),
Susanne May and
Ying Qing Chen
Additional contact information
Luis Alexander Crouch: University of Washington
Susanne May: University of Washington
Ying Qing Chen: Fred Hutchinson Cancer Research Center
Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, 2016, vol. 22, issue 2, No 7, 299-319
Abstract:
Abstract Estimation and inference in time-to-event analysis typically focus on hazard functions and their ratios under the Cox proportional hazards model. These hazard functions, while popular in the statistical literature, are not always easily or intuitively communicated in clinical practice, such as in the settings of patient counseling or resource planning. Expressing and comparing quantiles of event times may allow for easier understanding. In this article we focus on residual time, i.e., the remaining time-to-event at an arbitrary time t given that the event has yet to occur by t. In particular, we develop estimation and inference procedures for covariate-specific quantiles of the residual time under the Cox model. Our methods and theory are assessed by simulations, and demonstrated in analysis of two real data sets.
Keywords: Censoring; Hazard function; Time-to-event (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s10985-015-9332-1 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:lifeda:v:22:y:2016:i:2:d:10.1007_s10985-015-9332-1
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10985
DOI: 10.1007/s10985-015-9332-1
Access Statistics for this article
Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data is currently edited by Mei-Ling Ting Lee
More articles in Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().