Robust estimation in accelerated failure time models
Sanjoy K. Sinha ()
Additional contact information
Sanjoy K. Sinha: Carleton University
Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, 2019, vol. 25, issue 1, No 3, 52-78
Abstract:
Abstract The accelerated failure time model is widely used for analyzing censored survival times often observed in clinical studies. It is well-known that the ordinary maximum likelihood estimators of the parameters in the accelerated failure time model are generally sensitive to potential outliers or small deviations from the underlying distributional assumptions. In this paper, we propose and explore a robust method for fitting the accelerated failure time model to survival data by bounding the influence of outliers in both the outcome variable and associated covariates. We also develop a sandwich-type variance–covariance function for approximating the variances of the proposed robust estimators. The finite-sample properties of the estimators are investigated based on empirical results from an extensive simulation study. An application is provided using actual data from a clinical study of primary breast cancer patients.
Keywords: Failure time model; Hazard function; Outliers; Robust estimation; Survival data (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://link.springer.com/10.1007/s10985-018-9421-z Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:lifeda:v:25:y:2019:i:1:d:10.1007_s10985-018-9421-z
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10985
DOI: 10.1007/s10985-018-9421-z
Access Statistics for this article
Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data is currently edited by Mei-Ling Ting Lee
More articles in Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().