Reliability analysis of load-sharing systems with memory
Dewei Wang (),
Chendi Jiang and
Chanseok Park
Additional contact information
Dewei Wang: University of South Carolina
Chendi Jiang: University of South Carolina
Chanseok Park: Pusan National University
Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, 2019, vol. 25, issue 2, No 8, 360 pages
Abstract:
Abstract The load-sharing model has been studied since the early 1940s to account for the stochastic dependence of components in a parallel system. It assumes that, as components fail one by one, the total workload applied to the system is shared by the remaining components and thus affects their performance. Such dependent systems have been studied in many engineering applications which include but are not limited to fiber composites, manufacturing, power plants, workload analysis of computing, software and hardware reliability, etc. Many statistical models have been proposed to analyze the impact of each redistribution of the workload; i.e., the changes on the hazard rate of each remaining component. However, they do not consider how long a surviving component has worked for prior to the redistribution. We name such load-sharing models as memoryless. To remedy this potential limitation, we propose a general framework for load-sharing models that account for the work history. Through simulation studies, we show that an inappropriate use of the memoryless assumption could lead to inaccurate inference on the impact of redistribution. Further, a real-data example of plasma display devices is analyzed to illustrate our methods.
Keywords: Load-share parameters; Maximum likelihood estimator; Parallel system; lifetime prediction; System dependence (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://link.springer.com/10.1007/s10985-018-9425-8 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:lifeda:v:25:y:2019:i:2:d:10.1007_s10985-018-9425-8
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10985
DOI: 10.1007/s10985-018-9425-8
Access Statistics for this article
Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data is currently edited by Mei-Ling Ting Lee
More articles in Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().