A Bayesian approach for semiparametric regression analysis of panel count data
Jianhong Wang () and
Xiaoyan Lin ()
Additional contact information
Jianhong Wang: University of South Carolina
Xiaoyan Lin: University of South Carolina
Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, 2020, vol. 26, issue 2, No 9, 402-420
Abstract:
Abstract Panel count data commonly arise in epidemiological, social science, and medical studies, in which subjects have repeated measurements on the recurrent events of interest at different observation times. Since the subjects are not under continuous monitoring, the exact times of those recurrent events are not observed but the counts of such events within the adjacent observation times are known. A Bayesian semiparametric approach is proposed for analyzing panel count data under the proportional mean model. Specifically, a nonhomogeneous Poisson process is assumed to model the panel count response over time, and the baseline mean function is approximated by monotone I-splines of Ramsay (Stat Sci 3:425–461, 1988). Our approach allows to estimate the regression parameters and the baseline mean function jointly. The proposed Gibbs sampler is computationally efficient and easy to implement because all of the full conditional distributions either have closed form or are log-concave. Extensive simulations are conducted to evaluate the proposed method and to compare with two other bench methods. The proposed approach is also illustrated by an application to a famous bladder tumor data set (Byar, in: Pavone-Macaluso M, Smith PH, Edsmyn F (eds) Bladder tumors and other topics in urological oncology. Plenum, New York, 1980).
Keywords: Monotone splines; Nonhomogeneous Poisson process; Panel count data; Proportional mean model; Semiparametric regression (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://link.springer.com/10.1007/s10985-019-09471-3 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:lifeda:v:26:y:2020:i:2:d:10.1007_s10985-019-09471-3
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10985
DOI: 10.1007/s10985-019-09471-3
Access Statistics for this article
Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data is currently edited by Mei-Ling Ting Lee
More articles in Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().