EU’s bioethanol potential from wheat straw and maize stover and the environmental footprint of residue-based bioethanol
Bunyod Holmatov (),
Arjen Y. Hoekstra () and
Maarten S. Krol ()
Additional contact information
Bunyod Holmatov: University of Twente
Arjen Y. Hoekstra: University of Twente
Maarten S. Krol: University of Twente
Mitigation and Adaptation Strategies for Global Change, 2022, vol. 27, issue 1, No 6, 18 pages
Abstract:
Abstract To reduce greenhouse gas (GHG) emissions, the European Union (EU) has targets for utilizing energy from renewable sources. By 2030, a minimum of 3.5% of energy in the EU’s transport sector should come from renewable biological sources, such as crop residues. This paper analyzed EU’s “advanced bioethanol” potential from wheat straw and maize stover and evaluated its environmental (land, water, and carbon) footprint. We differentiated between gross and net bioethanol output, the latter by subtracting the energy inputs in production. Results suggest that the annual amount of the sustainably harvestable wheat straw and maize stover is 81.9 Megatonnes (Mt) at field moisture weight (65.3 Mt as dry weight), yielding 470 PJ as gross (404 PJ as net) advanced bioethanol output. Calculated net advanced bioethanol can replace 2.95% of EU transport sector’s energy consumption. EU’s advanced bioethanol has a land footprint of 0.28 m2 MJ−1 for wheat straw and 0.18 m2 MJ−1 for maize stover. The average water footprint of advanced bioethanol is 173 L MJ−1 for wheat straw and 113 L MJ−1 for maize stover. The average carbon footprint per unit of advanced bioethanol is 19.4 and 19.6 g CO2eq MJ−1 for wheat straw and maize stover, respectively. Using advanced bioethanol can lead to emission savings, but EU’s advanced bioethanol production potential is insufficient to achieve EU’s target of a minimum share of 3.5% of advanced biofuels in the transport sector by 2030, and the associated water and land footprints are not smaller than footprints of conventional bioethanol.
Keywords: Biofuel; Crop residue; Environmental footprint; EU energy policy; Lignocellulosic bioethanol; Sustainable development (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s11027-021-09984-z Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:masfgc:v:27:y:2022:i:1:d:10.1007_s11027-021-09984-z
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11027
DOI: 10.1007/s11027-021-09984-z
Access Statistics for this article
Mitigation and Adaptation Strategies for Global Change is currently edited by Robert Dixon
More articles in Mitigation and Adaptation Strategies for Global Change from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().