Optimal risk and dividend distribution control models for an insurance company
Michael I. Taksar
Mathematical Methods of Operations Research, 2000, vol. 51, issue 1, 42 pages
Abstract:
The current paper presents a short survey of stochastic models of risk control and dividend optimization techniques for a financial corporation. While being close to consumption/investment models of Mathematical Finance, dividend optimization models possess special features which do not allow them to be treated as a particular case of consumption/investment models.¶ In a typical model of this sort, in the absence of control, the reserve (surplus) process, which represents the liquid assets of the company, is governed by a Brownian motion with constant drift and diffusion coefficient. This is a limiting case of the classical Cramer-Lundberg model in which the reserve is a compound Poisson process, amended by a linear term, representing a constant influx of the insurance premiums. Risk control action corresponds to reinsuring part of the claims the cedent is required to pay simultaneously diverting part of the premiums to a reinsurance company. This translates into controlling the drift and the diffusion coefficient of the approximating process. The dividend distribution policy consists of choosing the times and the amounts of dividends to be paid out to shareholders. Mathematically, the cumulative dividend process is described by an increasing functional which may or may not be continuous with respect to time.¶ The objective in the models presented here is maximization of the dividend pay-outs. We will discuss models with different types of conditions imposed upon a company and different types of reinsurances available, such as proportional, noncheap, proportional in a presence of a constant debt liability, excess-of-loss. We will show that in most cases the optimal dividend distribution scheme is of a barrier type, while the risk control policy depends significantly on the nature of the reinsurance available. Copyright Springer-Verlag Berlin Heidelberg 2000
Keywords: Key words: Stochastic control; stochastic differential equations; controlled stochastic processes; proportional reinsurance; dividend optimization; ruin probabilities (search for similar items in EconPapers)
Date: 2000
References: Add references at CitEc
Citations: View citations in EconPapers (49)
Downloads: (external link)
http://hdl.handle.net/10.1007/s001860050001 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:mathme:v:51:y:2000:i:1:p:1-42
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/00186
DOI: 10.1007/s001860050001
Access Statistics for this article
Mathematical Methods of Operations Research is currently edited by Oliver Stein
More articles in Mathematical Methods of Operations Research from Springer, Gesellschaft für Operations Research (GOR), Nederlands Genootschap voor Besliskunde (NGB)
Bibliographic data for series maintained by Sonal Shukla (sonal.shukla@springer.com) and Springer Nature Abstracting and Indexing (indexing@springernature.com).