Linear preselective policies for stochastic project scheduling
Rolf H. Möhring and
Frederik Stork
Mathematical Methods of Operations Research, 2000, vol. 52, issue 3, 515 pages
Abstract:
In the context of stochastic resource-constrained project scheduling we introduce a novel class of scheduling policies, the linear preselective policies. They combine the benefits of preselective policies and priority policies; two classes that are well known from both deterministic and stochastic scheduling. We study several properties of this new class of policies which indicate its usefulness for computational purposes. Based on a new representation of preselective policies as and/ or precedence constraints we derive efficient algorithms for computing earliest job start times and state a necessary and sufficient dominance criterion for preselective policies. A computational experiment based on 480 instances empirically validates the theoretical findings. Copyright Springer-Verlag Berlin Heidelberg 2000
Keywords: Key words: Resource-constrained project scheduling – random processing times – scheduling policies –and/or precedence constraints (search for similar items in EconPapers)
Date: 2000
References: Add references at CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://hdl.handle.net/10.1007/s001860000095 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:mathme:v:52:y:2000:i:3:p:501-515
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/00186
DOI: 10.1007/s001860000095
Access Statistics for this article
Mathematical Methods of Operations Research is currently edited by Oliver Stein
More articles in Mathematical Methods of Operations Research from Springer, Gesellschaft für Operations Research (GOR), Nederlands Genootschap voor Besliskunde (NGB)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().