Simulation of typical Cox–Voronoi cells with a special regard to implementation tests
C. Gloaguen (),
F. Fleischer (),
H. Schmidt () and
V. Schmidt ()
Mathematical Methods of Operations Research, 2005, vol. 62, issue 3, 357-373
Abstract:
We consider stationary Poisson line processes in the Euclidean plane and analyze properties of Voronoi tessellations induced by Poisson point processes on these lines. In particular, we describe and test an algorithm for the simulation of typical cells of this class of Cox–Voronoi tessellations. Using random testing, we validate our algorithm by comparing theoretical values of functionals of the zero cell to simulated values obtained by our algorithm. Finally, we analyze geometric properties of the typical Cox–Voronoi cell and compare them to properties of the typical cell of other well-known classes of tessellations, especially Poisson–Voronoi tessellations. Our results can be applied to stochastic–geometric modelling of networks in telecommunication and life sciences, for example. The lines can then represent roads in urban road systems, blood arteries or filament structures in biological tissues or cells, while the points can be locations of telecommunication equipment or vesicles, respectively. Copyright Springer-Verlag 2005
Keywords: Stochastic geometry; Random tessellation; Typical cell; Shape analysis; Network; Random software testing; 60D05; 90B15; 68U20 (search for similar items in EconPapers)
Date: 2005
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1007/s00186-005-0036-2 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:mathme:v:62:y:2005:i:3:p:357-373
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/00186
DOI: 10.1007/s00186-005-0036-2
Access Statistics for this article
Mathematical Methods of Operations Research is currently edited by Oliver Stein
More articles in Mathematical Methods of Operations Research from Springer, Gesellschaft für Operations Research (GOR), Nederlands Genootschap voor Besliskunde (NGB)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().