An inexact logarithmic-quadratic proximal augmented Lagrangian method for a class of constrained variational inequalities
M. Li (),
H. Shao and
Bing He
Mathematical Methods of Operations Research, 2007, vol. 66, issue 2, 183-201
Abstract:
The augmented Lagrangian method is attractive in constraint optimizations. When it is applied to a class of constrained variational inequalities, the sub-problem in each iteration is a nonlinear complementarity problem (NCP). By introducing a logarithmic-quadratic proximal term, the sub-NCP becomes a system of nonlinear equations, which we call the LQP system. Solving a system of nonlinear equations is easier than the related NCP, because the solution of the NCP has combinatorial properties. In this paper, we present an inexact logarithmic-quadratic proximal augmented Lagrangian method for a class of constrained variational inequalities, in which the LQP system is solved approximately under a rather relaxed inexactness criterion. The generated sequence is Fejér monotone and the global convergence is proved. Finally, some numerical test results for traffic equilibrium problems are presented to demonstrate the efficiency of the method. Copyright Springer-Verlag 2007
Keywords: Augmented Lagrangian method; Logarithmic-quadratic proximal method; Structured variational inequalities; 65K10; 90C25; 90C30 (search for similar items in EconPapers)
Date: 2007
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1007/s00186-007-0145-1 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:mathme:v:66:y:2007:i:2:p:183-201
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/00186
DOI: 10.1007/s00186-007-0145-1
Access Statistics for this article
Mathematical Methods of Operations Research is currently edited by Oliver Stein
More articles in Mathematical Methods of Operations Research from Springer, Gesellschaft für Operations Research (GOR), Nederlands Genootschap voor Besliskunde (NGB)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().