The age of the arrival process in the G/M/1 and M/G/1 queues
Moshe Haviv () and
Yoav Kerner ()
Mathematical Methods of Operations Research, 2011, vol. 73, issue 1, 139-152
Abstract:
This paper shows that in the G/M/1 queueing model, conditioning on a busy server, the age of the inter-arrival time and the number of customers in the queue are independent. The same is the case when the age is replaced by the residual inter-arrival time or by its total value. Explicit expressions for the conditional density functions, as well as some stochastic orders, in all three cases are given. Moreover, we show that this independence property, which we prove by elementary arguments, also leads to an alternative proof for the fact that given a busy server, the number of customers in the queue follows a geometric distribution. We conclude with a derivation for the Laplace Stieltjes Transform (LST) of the age of the inter-arrival time in the M/G/1 queue. Copyright Springer-Verlag 2011
Keywords: G/M/1 queue; M/G/1 queue; Age of inter arrival time (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1007/s00186-010-0337-y (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:mathme:v:73:y:2011:i:1:p:139-152
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/00186
DOI: 10.1007/s00186-010-0337-y
Access Statistics for this article
Mathematical Methods of Operations Research is currently edited by Oliver Stein
More articles in Mathematical Methods of Operations Research from Springer, Gesellschaft für Operations Research (GOR), Nederlands Genootschap voor Besliskunde (NGB)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().