Combinatorial integral approximation
Sebastian Sager (),
Michael Jung and
Christian Kirches
Mathematical Methods of Operations Research, 2011, vol. 73, issue 3, 363-380
Abstract:
We are interested in structures and efficient methods for mixed-integer nonlinear programs (MINLP) that arise from a first discretize, then optimize approach to time-dependent mixed-integer optimal control problems (MIOCPs). In this study we focus on combinatorial constraints, in particular on restrictions on the number of switches on a fixed time grid. We propose a novel approach that is based on a decomposition of the MINLP into a NLP and a MILP. We discuss the relation of the MILP solution to the MINLP solution and formulate bounds for the gap between the two, depending on Lipschitz constants and the control discretization grid size. The MILP solution can also be used for an efficient initialization of the MINLP solution process. The speedup of the solution of the MILP compared to the MINLP solution is considerable already for general purpose MILP solvers. We analyze the structure of the MILP that takes switching constraints into account and propose a tailored Branch and Bound strategy that outperforms cplex on a numerical case study and hence further improves efficiency of our novel method. Copyright Springer-Verlag 2011
Keywords: MINLP; MIOCP; MILP; Optimal control; Integer programming; 90C11; 90C30; 49J15; 90C57 (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
http://hdl.handle.net/10.1007/s00186-011-0355-4 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:mathme:v:73:y:2011:i:3:p:363-380
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/00186
DOI: 10.1007/s00186-011-0355-4
Access Statistics for this article
Mathematical Methods of Operations Research is currently edited by Oliver Stein
More articles in Mathematical Methods of Operations Research from Springer, Gesellschaft für Operations Research (GOR), Nederlands Genootschap voor Besliskunde (NGB)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().