EconPapers    
Economics at your fingertips  
 

Sojourn time asymptotics in a parking lot network

Regina Egorova and Bert Zwart ()

Mathematical Methods of Operations Research, 2011, vol. 74, issue 2, 163-190

Abstract: For a two-class two-node bandwidth sharing network called parking lot network we investigate the tail behavior of the queue length and sojourn time under light-tailed assumptions. These results extend previous results in the literature obtained for a single-node network. Explicit conditions are given that indicate whether congestion at the second node influences the large deviations behavior or not. To overcome the complexities that arise when moving away from the single node case, we rely on recent results on overloaded bandwidth sharing networks obtained by Borst et al. (2009), and a comparison with the modified proportional fairness discipline, as introduced by Massoulié (Ann Appl Probab 17: 809–839, 2007 ). Specifically, our results include upper bounds for the distribution of the number of flows in the network, finiteness of the moment generating function of the workload, and large-deviations asymptotics for the sojourn time assuming flow size distributions having a bounded hazard rate. Copyright Springer-Verlag 2011

Keywords: Large deviations; Bandwidth sharing networks (search for similar items in EconPapers)
Date: 2011
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1007/s00186-011-0351-8 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:mathme:v:74:y:2011:i:2:p:163-190

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/00186

DOI: 10.1007/s00186-011-0351-8

Access Statistics for this article

Mathematical Methods of Operations Research is currently edited by Oliver Stein

More articles in Mathematical Methods of Operations Research from Springer, Gesellschaft für Operations Research (GOR), Nederlands Genootschap voor Besliskunde (NGB)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:mathme:v:74:y:2011:i:2:p:163-190