Stability analysis of parallel server systems under longest queue first
Golshid Baharian () and
Tolga Tezcan ()
Mathematical Methods of Operations Research, 2011, vol. 74, issue 2, 257-279
Abstract:
We consider the stability of parallel server systems under the longest queue first (LQF) rule. We show that when the underlying graph of a parallel server system is a tree, the standard nominal traffic condition is sufficient for the stability of that system under LQF when interarrival and service times have general distributions. Then we consider a special parallel server system, which is known as the X-model, whose underlying graph is not a tree. We provide additional “drift” conditions for the stability and transience of these queueing systems with exponential interarrival and service times. Drift conditions depend in general on the stationary distribution of an induced Markov chain that is derived from the underlying queueing system. We illustrate our results with examples and simulation experiments. We also demonstrate that the stability of the LQF depends on the tie-breaking rule used and that it can be unstable even under arbitrary low loads. Copyright Springer-Verlag 2011
Keywords: Stability; Longest queue first; Parallel server systems; Fluid model (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1007/s00186-011-0362-5 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:mathme:v:74:y:2011:i:2:p:257-279
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/00186
DOI: 10.1007/s00186-011-0362-5
Access Statistics for this article
Mathematical Methods of Operations Research is currently edited by Oliver Stein
More articles in Mathematical Methods of Operations Research from Springer, Gesellschaft für Operations Research (GOR), Nederlands Genootschap voor Besliskunde (NGB)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().