Estimation of more than one parameters in stratified sampling with fixed budget
Rahul Varshney (),
Najmussehar () and
M. Ahsan ()
Mathematical Methods of Operations Research, 2012, vol. 75, issue 2, 185-197
Abstract:
In a multivariate stratified sampling more than one characteristic are defined on every unit of the population. An optimum allocation which is optimum for one characteristic will generally be far from optimum for others. A compromise criterion is needed to work out a usable allocation which is optimum, in some sense, for all the characteristics. When auxiliary information is also available the precision of the estimates of the parameters can be increased by using it. Furthermore, if the travel cost within the strata to approach the units selected in the sample is significant the cost function remains no more linear. In this paper an attempt has been made to obtain a compromise allocation based on minimization of individual coefficients of variation of the estimates of various characteristics, using auxiliary information and a nonlinear cost function with fixed budget. A new compromise criterion is suggested. The problem is formulated as a multiobjective all integer nonlinear programming problem. A solution procedure is also developed using goal programming technique. Copyright Springer-Verlag 2012
Keywords: Multivariate stratified sampling; Compromise allocation; Nonlinear programming problem (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1007/s00186-012-0380-y (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:mathme:v:75:y:2012:i:2:p:185-197
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/00186
DOI: 10.1007/s00186-012-0380-y
Access Statistics for this article
Mathematical Methods of Operations Research is currently edited by Oliver Stein
More articles in Mathematical Methods of Operations Research from Springer, Gesellschaft für Operations Research (GOR), Nederlands Genootschap voor Besliskunde (NGB)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().