Optimal partial hedging of an American option: shifting the focus to the expiration date
Peter Lindberg ()
Mathematical Methods of Operations Research, 2012, vol. 75, issue 3, 243 pages
Abstract:
As a main contribution we present a new approach for studying the problem of optimal partial hedging of an American contingent claim in a finite and complete discrete-time market. We assume that at an early exercise time the investor can borrow the amount she has to pay for the option holder by entering a short position in the numéraire asset and that this loan in turn will mature at the expiration date. We model and solve a partial hedging problem, where the investor’s purpose is to find a minimal amount at which she can hedge the above-mentioned loan with a given probability, while the potential shortfall is bounded above by a certain number of numéraire assets. A knapsack problem approach and greedy algorithm are used in solving the problem. To get a wider view of the subject and to make interesting comparisons, we treat also a closely related European case as well as an American case where a barrier condition is applied. Copyright Springer-Verlag 2012
Keywords: Efficient hedging; Quantile hedging; American options; Knapsack problem; Greedy algorithm; Binomial model; 91G20; 90C05; 60H30 (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1007/s00186-012-0382-9 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:mathme:v:75:y:2012:i:3:p:221-243
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/00186
DOI: 10.1007/s00186-012-0382-9
Access Statistics for this article
Mathematical Methods of Operations Research is currently edited by Oliver Stein
More articles in Mathematical Methods of Operations Research from Springer, Gesellschaft für Operations Research (GOR), Nederlands Genootschap voor Besliskunde (NGB)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().