Generalized Evolutionary Point Processes: Model Specifications and Model Comparison
Philip A. White () and
Alan E. Gelfand
Additional contact information
Philip A. White: Brigham Young University
Alan E. Gelfand: Duke University
Methodology and Computing in Applied Probability, 2021, vol. 23, issue 3, 1001-1021
Abstract:
Abstract Generalized evolutionary point processes offer a class of point process models that allows for either excitation or inhibition based upon the history of the process. In this regard, we propose modeling which comprises generalization of the nonlinear Hawkes process. Working within a Bayesian framework, model fitting is implemented through Markov chain Monte Carlo. This entails discussion of computation of the likelihood for such point patterns. Furthermore, for this class of models, we discuss strategies for model comparison. Using simulation, we illustrate how well we can distinguish these models from point pattern specifications with conditionally independent event times, e.g., Poisson processes. Specifically, we demonstrate that these models can correctly identify true relationships (i.e., excitation or inhibition/control). Then, we consider a novel extension of the log Gaussian Cox process that incorporates evolutionary behavior and illustrate that our model comparison approach prefers the evolutionary log Gaussian Cox process compared to simpler models. We also examine a real dataset consisting of violent crime events from the 11th police district in Chicago from the year 2018. This data exhibits strong daily seasonality and changes across the year. After we account for these data attributes, we find significant but mild self-excitation, implying that event occurrence increases the intensity of future events.
Keywords: Bayesian framework; Conditional intensity; Inhibition; Markov chain Monte Carlo; (nonlinear) Hawkes process; Self-exciting; 60G55; 62P25 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s11009-020-09797-8 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:metcap:v:23:y:2021:i:3:d:10.1007_s11009-020-09797-8
Ordering information: This journal article can be ordered from
https://www.springer.com/journal/11009
DOI: 10.1007/s11009-020-09797-8
Access Statistics for this article
Methodology and Computing in Applied Probability is currently edited by Joseph Glaz
More articles in Methodology and Computing in Applied Probability from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().