Characteristics of extreme precipitation and runoff in the Xijiang River Basin at global warming of 1.5 °C and 2 °C
Yinmao Zhao (),
Zhansheng Li,
Siyu Cai and
Hao Wang
Additional contact information
Yinmao Zhao: Tianjin University
Zhansheng Li: Tsinghua University
Siyu Cai: China Institute of Water Resources and Hydropower Research
Hao Wang: Tianjin University
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2020, vol. 101, issue 3, No 3, 669-688
Abstract:
Abstract Ten models of NEX-GDDP CMIP5 were used to perform equal-weighted averaging under the RCP4.5 and RCP8.5 scenarios to obtain daily precipitation and temperature data under a multi-model ensemble. The CREST and VIC models were used to project the change characteristics of runoff and precipitation in the Xijiang River Basin under the background of a global warming by 1.5 °C and 2 °C, respectively. The results show that: (1) under the two warming target scenarios, there are obvious regional differences in the extreme precipitation in the Xijiang River Basin under the RCP4.5 and RCP8.5 scenarios. The precipitation increases on the whole and more so under the high-emission and greater-warming scenarios. In addition, extreme precipitation events in the Xijiang River Basin are significantly different at a temperature rise of additional 0.5 °C. (2) CREST and VIC have good feasibility in the Xijiang River Basin. The projected runoff increases under different combinations of scenarios and at various time scales compared to the baseline period. (3) There is no significant difference between the multi-annual average monthly runoff distribution percentage calculated by the multi-model and hydrological model ensemble average and the multi-annual average monthly runoff distribution percentage during the baseline period and the distributions under the RCP 4.5 and 8.5 scenarios are more uniform and uneven, respectively, than that in the baseline period.
Keywords: Xijiang River Basin; Global warming; CMIP5; Extreme precipitation; Runoff (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://link.springer.com/10.1007/s11069-020-03889-x Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:101:y:2020:i:3:d:10.1007_s11069-020-03889-x
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069
DOI: 10.1007/s11069-020-03889-x
Access Statistics for this article
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk
More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().