EconPapers    
Economics at your fingertips  
 

Development of flood mitigation strategies toward sustainable development

Mehri Abdi-Dehkordi (), Omid Bozorg-Haddad (), Abdolrahim Salavitabar (), Sahar Mohammad-Azari () and Erfan Goharian ()
Additional contact information
Mehri Abdi-Dehkordi: University of Tehran
Omid Bozorg-Haddad: University of Tehran
Abdolrahim Salavitabar: Consultant On Water Resources of Mahab Ghodss Consulting Engineering Company
Sahar Mohammad-Azari: University of Tehran
Erfan Goharian: University of South Carolina

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2021, vol. 108, issue 3, No 8, 2543-2567

Abstract: Abstract Decreasing flood damages in a basin and achieving sustainable development reveal the necessity of integrated management of flood. Integrated flood management requires the co-implementation of both structural and non-structural flood mitigation strategies. Watershed management, building dams and levees, and increasing channel capacity are considered among structural measures. While, flood forecasting, developing flood early warning systems, and establishing reservoir operation rules can fall into the non-structural measures group. The main goal of this study is to reveal the importance of co-implementation of structural and non-structural measures for managing the flood in the whole system. Structural measures are divided here into two main groups (1) dams and (2) watershed management, and non-structural measures focus more on reoperation of the system of reservoirs. The system dynamics (SD) approach has been used to model the integration of a series of structural and non-structural flood control measures for the Karkheh Basin, Iran. The performance of the developed model is evaluated based on historical floods, including the recent 2019 flooding event in this basin, and the performance of flood mitigation strategies is evaluated facing these flood events. Results indicate that both structural and non-structural solutions should be considered in flood management portfolios simultaneously, and none solely can be the silver bullet. The magnitude of a 200-year flood can be reduced from 7956 to 3021 m3/s, if integrated structural and non-structural strategies would be considered in Karkheh Basin. This study identifies the key role of structural and non-structural measures for integrated flood management in Karkheh Basin, which and provides effective information for appropriate and timely operation and decision making in the future.

Keywords: Integrated management; Flood; System dynamics; Karkheh basin (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s11069-021-04788-5 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:108:y:2021:i:3:d:10.1007_s11069-021-04788-5

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069

DOI: 10.1007/s11069-021-04788-5

Access Statistics for this article

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk

More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:nathaz:v:108:y:2021:i:3:d:10.1007_s11069-021-04788-5