Digital twin-driven intelligence disaster prevention and mitigation for infrastructure: advances, challenges, and opportunities
Dianyou Yu () and
Zheng He ()
Additional contact information
Dianyou Yu: Dalian University of Technology
Zheng He: Dalian University of Technology
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2022, vol. 112, issue 1, No 1, 36 pages
Abstract:
Abstract Natural hazards, which have the potential to cause catastrophic damage and loss to infrastructure, have increased significantly in recent decades. Thus, the construction demand for disaster prevention and mitigation for infrastructure (DPMI) systems is increasing. Many studies have applied intelligence technologies to solve key aspects of infrastructure, such as design, construction, disaster prevention and mitigation, and rescue and recovery; however, systematic construction is still lacking. Digital twin (DT) is one of the most promising technologies for multi-stage management which has great potential to solve the above challenges. This paper initially puts forward a scientific concept, in which DT drives the construction of intelligent disaster prevention and mitigation for infrastructure (IDPMI) systematically. To begin with, a scientific review of DT and IDPMI is performed, where the development of DT is summarized and a DT-based life cycle of infrastructures is defined. In addition, the intelligence technologies used in disaster management are key reviewed and their relative merits are illustrated. Furthermore, the development and technical feasibility of DT-driven IDPMI are illustrated by reviewing the relevant practice of DT in infrastructure. In conclusion, a scientific framework of DT-IDPMI is programmed, which not only provides some guidance for the deep integration between DT and IDPMI but also identifies the challenges that inspire the professional community to advance these techniques to address them in future research.
Keywords: Digital twin; Disaster; Infrastructure; Intelligence technology; Computer vision; Internet of Things; Extended reality; Intelligent design; Intelligent construction and maintenance (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://link.springer.com/10.1007/s11069-021-05190-x Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:112:y:2022:i:1:d:10.1007_s11069-021-05190-x
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069
DOI: 10.1007/s11069-021-05190-x
Access Statistics for this article
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk
More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().