EconPapers    
Economics at your fingertips  
 

Evacuation behaviors in tsunami drills

Chen Chen (), Alireza Mostafizi (), Haizhong Wang (), Dan Cox () and Lori Cramer ()
Additional contact information
Chen Chen: Oregon State University
Alireza Mostafizi: Oregon State University
Haizhong Wang: Oregon State University
Dan Cox: Oregon State University
Lori Cramer: Oregon State University

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2022, vol. 112, issue 1, No 36, 845-871

Abstract: Abstract This paper presents the use of tsunami evacuation drills within a coastal community in the Cascadia Subduction Zone (CSZ) to better understand evacuation behaviors and thus to improve tsunami evacuation preparedness and resilience. Evacuees’ spatial trajectory data were collected by Global Navigation Satellite System (GNSS) embedded in mobile devices. Based on the empirical trajectory data, probability functions were employed to model people’s walking speed during the evacuation drills. An Evacuation Hiking Function (EHF) was established to depict the speed–slope relationship and to inform evacuation modeling and planning. The regression analysis showed that evacuees’ speed was significantly negatively associated with slope, time spent during evacuation, rough terrain surface, walking at night, and distance to destination. We also demonstrated the impacts of milling time on mortality rate based on participants’ empirical evacuation behaviors and a state-of-the-art CSZ tsunami inundation model. Post-drill surveys revealed the importance of the drill as an educational and assessment tool. The results of this study can be used for public education, evacuation plan assessment, and evacuation simulation models. The drill procedures, designs, and the use of technology in data collection provide evidence-driven solutions to tsunami preparedness and inspire the use of drills in other types of natural disasters such as wildfires, hurricanes, volcanoes, and flooding.

Keywords: Tsunami evacuation; Evacuation drill; Walking speed; Preparedness and resilience; Cascadia Subduction Zone (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://link.springer.com/10.1007/s11069-022-05208-y Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:112:y:2022:i:1:d:10.1007_s11069-022-05208-y

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069

DOI: 10.1007/s11069-022-05208-y

Access Statistics for this article

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk

More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:nathaz:v:112:y:2022:i:1:d:10.1007_s11069-022-05208-y