Flood risk analyses—how detailed do we need to be?
H. Apel (hapel@gfz-potsdam.de),
G. Aronica,
H. Kreibich and
A. Thieken
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2009, vol. 49, issue 1, 79-98
Abstract:
Applied flood risk analyses, especially in urban areas, very often pose the question how detailed the analysis needs to be in order to give a realistic figure of the expected risk. The methods used in research and practical applications range from very basic approaches with numerous simplifying assumptions up to very sophisticated, data and calculation time demanding applications both on the hazard and on the vulnerability part of the risk. In order to shed some light on the question of required model complexity in flood risk analyses and outputs sufficiently fulfilling the task at hand, a number of combinations of models of different complexity both on the hazard and on the vulnerability side were tested in a case study. The different models can be organized in a model matrix of different complexity levels: On the hazard side, the approaches/models selected were (A) linear interpolation of gauge water levels and intersection with a digital elevation model (DEM), (B) a mixed 1D/2D hydraulic model with simplifying assumptions (LISFLOOD-FP) and (C) a Saint-Venant 2D zero-inertia hyperbolic hydraulic model considering the built environment and infrastructure. On the vulnerability side, the models used for the estimation of direct damage to residential buildings are in order of increasing complexity: (I) meso-scale stage-damage functions applied to CORINE land cover data, (II) the rule-based meso-scale model FLEMOps+ using census data on the municipal building stock and CORINE land cover data and (III) a rule-based micro-scale model applied to a detailed building inventory. Besides the inundation depths, the latter two models consider different building types and qualities as well as the level of private precaution and contamination of the floodwater. The models were applied in a municipality in east Germany, Eilenburg. It suffered extraordinary damage during the flood of August 2002, which was well documented as were the inundation extent and depths. These data provide an almost unique data set for the validation of flood risk analyses. The analysis shows that the combination of the 1D/2D model and the meso-scale damage model FLEMOps+ performed best and provide the best compromise between data requirements, simulation effort, and an acceptable accuracy of the results. The more detailed approaches suffered from complex model set-up, high data requirements, and long computation times. Copyright Springer Science+Business Media B.V. 2009
Keywords: Flood risk; Hydraulic modelling; Damage estimation; Prediction uncertainty; Model performance (search for similar items in EconPapers)
Date: 2009
References: Add references at CitEc
Citations: View citations in EconPapers (60)
Downloads: (external link)
http://hdl.handle.net/10.1007/s11069-008-9277-8 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:49:y:2009:i:1:p:79-98
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069
DOI: 10.1007/s11069-008-9277-8
Access Statistics for this article
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk
More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla (sonal.shukla@springer.com) and Springer Nature Abstracting and Indexing (indexing@springernature.com).