EconPapers    
Economics at your fingertips  
 

Debris-flow susceptibility analysis using fluvio-morphological parameters and data mining: application to the Central-Eastern Pyrenees

G. Chevalier (), V. Medina, M. Hürlimann and A. Bateman

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2013, vol. 67, issue 2, 213-238

Abstract: Based on debris-flow inventories and using a geographical information system, the susceptibility models presented here take into account fluvio-morphologic parameters, gathered for every first-order catchment. Data mining techniques on the morphometric parameters are used, to work out and test three different models. The first model is a logistic regression analysis based on weighting the parameters. The other two are classification trees, which are rather novel susceptibility models. These techniques enable gathering the necessary data to evaluate the performance of the models tested, with and without optimization. The analysis was performed in the Catalan Pyrenees and covered an area of more than 4,000 km 2 . Results related to the training dataset show that the optimized models performance lie within former reported range, in terms of AUC, although closer to the lowest end (near 70 %). When the models are applied to the test set, the quality of most results decreases. However, out of the three different models, logistic regression seems to offer the best prediction, as training and test sets results are very similar, in terms of performance. Trees are better at extracting laws from a training set, but validation through a test set gives results unacceptable for a prediction at regional scale. Although omitting parameters in geology or vegetation, fluvio-morphologic models based on data mining, can be used in the framework of a regional debris-flow susceptibility assessment in areas where only a digital elevation model is available. Copyright Springer Science+Business Media Dordrecht 2013

Keywords: Debris flows; Susceptibility; Morphometry; Data mining (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://hdl.handle.net/10.1007/s11069-013-0568-3 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:67:y:2013:i:2:p:213-238

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069

DOI: 10.1007/s11069-013-0568-3

Access Statistics for this article

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk

More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:nathaz:v:67:y:2013:i:2:p:213-238