EconPapers    
Economics at your fingertips  
 

Development and uncertainty quantification of hurricane surge response functions for hazard assessment in coastal bays

Nick Taylor, Jennifer Irish (), Ikpoto Udoh, Matthew Bilskie and Scott Hagen

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2015, vol. 77, issue 2, 1103-1123

Abstract: Reliable and robust methods of extreme value-based hurricane surge prediction, such as the joint probability method (JPM), are critical in the coastal engineering profession. The JPM has become the preferred surge hazard assessment method in the USA; however, it has a high computational cost: One location can require hundreds of simulated storms and more than ten thousand computational hours to complete. Optimal sampling methods that use physics-based surge response functions (SRFs) can reduce the required number of simulations. This study extends the development of SRFs to bay interior locations at Panama City, Florida. Mean SRF root-mean-square errors for open coast and bay interior locations were 0.34 and 0.37 m, respectively, comparable with ADCIRC errors. Average uncertainty increases from open coast, and bay SRFs were 10 and 12 %, respectively. Long-term climate trends, such as rising sea levels, introduce nonstationarity into the simulated and historical surge datasets. A common approach to estimating total flood elevations is to take the sum of projected sea-level rise (SLR) and present day surge (static approach); however, this does not account for dynamic SLR effects on surge generation. This study demonstrates that SLR has a significant dynamic effect on surge in the Panama City area, and that total flood elevations, with respect to changes in SLR, are poorly characterized as static increases. A simple adjustment relating total flood elevation to present day conditions is proposed. Uncertainty contributions from these SLR adjustments are shown to be reasonable for surge hazard assessments. Copyright Springer Science+Business Media Dordrecht 2015

Keywords: Storm surge; Hazard assessment; Coastal flooding; Uncertainty; Hurricanes (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)

Downloads: (external link)
http://hdl.handle.net/10.1007/s11069-015-1646-5 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:77:y:2015:i:2:p:1103-1123

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069

DOI: 10.1007/s11069-015-1646-5

Access Statistics for this article

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk

More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:nathaz:v:77:y:2015:i:2:p:1103-1123