Evaluating the accuracy of ANN and LR models to estimate the water quality in Zarivar International Wetland, Iran
Jamil Amanollahi (),
Shahram Kaboodvandpour () and
Hiva Majidi ()
Additional contact information
Jamil Amanollahi: University of Kurdistan
Shahram Kaboodvandpour: University of Kurdistan
Hiva Majidi: University of Kurdistan
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2017, vol. 85, issue 3, No 10, 1527 pages
Abstract:
Abstract One of the most important qualitative aspects of wetland ecosystem management is preserving the natural quality of water in such environments. This would not be achievable unless continuous water quality monitoring is implemented. With the recent advances in remote sensing technology, this technology could assist us to produce accurate models for estimating water quality variables in the ecosystem of wetlands. The present study was carried out to evaluate the capability of remote sensing data to estimate the water quality variables [pH, total suspended solids (TSS), total dissolved solids (TDS), turbidity, nitrate, sulfate, phosphate, chloride and the concentration of chlorophyll a] in Zarivar International Wetland using linear regression (LR) and artificial neural network (ANN) models. For this purpose, spectral reflectance of bands 2, 3, 4 and 5 of the OLI sensor of Landsat 8 was utilized as the input data and the collected chemical and physical data of water samples were selected as the objective data for both ANN and LR models. Based on our results overall, ANN model was the proper model compared with LR model. The spectral reflectance in bands 5 and 4 of OLI sensor revealed the best results to estimate TDS, TSS, turbidity and chlorophyll in comparison with other used bands in ANN model, respectively. We conclude that OLI sensor data are an excellent means for studying physical properties of water quality and comparing its chemical properties.
Keywords: Wetland; Model; Remote sensing; Chemical and physical; Turbidity; Chlorophyll (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://link.springer.com/10.1007/s11069-016-2641-1 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:85:y:2017:i:3:d:10.1007_s11069-016-2641-1
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069
DOI: 10.1007/s11069-016-2641-1
Access Statistics for this article
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk
More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().