Desertification in western Rajasthan (India): an assessment using remote sensing derived rain-use efficiency and residual trend methods
Arnab Kundu,
N. R. Patel,
S. K. Saha and
Dipanwita Dutta ()
Additional contact information
Arnab Kundu: Sam Higginbottom Institute of Agriculture, Technology and Sciences
N. R. Patel: Indian Space Research Organisation
S. K. Saha: Centre for Space Science and Technology Education in Asia and the Pacific
Dipanwita Dutta: Vidyasagar University
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2017, vol. 86, issue 1, No 15, 297-313
Abstract:
Abstract Owing to its impact on global ecosystem, climate change and related effects is being perceived as a serious issue worldwide especially in the arid and semi-arid regions. Climatic variability has been considered as a major cause for degradation of natural resources. Desertification caused by climatic or human-induced processes negatively affects the productivity of land within an ecosystem. It is noteworthy that depletion of vegetation cover plays a key role in land degradation; in fact reduction in plants and perennial cover is regarded as an indicator of the onset of desertification. Temporal analysis of satellite-based NDVI is one of the major remote sensing tools which can identify the depletion of vegetation cover. In the present study, rain-use efficiency (RUE) method has been used for monitoring vegetation degradation and, substantially, the process of desertification in western Rajasthan. RUE, the ratio between normalized growing season NDVI and rainfall, has been calculated for individual years (1983–2013). A correlation analysis was carried out by considering yearly RUE as dependent variable and time (years) as the independent variable. It shows that regression slope of RUE mainly depends upon the dynamic condition of integrated NDVI and rainfall. In order to monitor the areas under human-induced desertification, the residual trend method has been adopted. The correlation between rainfall and NDVI was found significant (p
Keywords: Desertification; Vegetation dynamics; NDVI; RUE; RESTREND (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s11069-016-2689-y Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:86:y:2017:i:1:d:10.1007_s11069-016-2689-y
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069
DOI: 10.1007/s11069-016-2689-y
Access Statistics for this article
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk
More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().