EconPapers    
Economics at your fingertips  
 

Cut slope stability assessment along ghat road section of Kolli hills, India

S. Anbazhagan (), V. Ramesh () and S. E. Saranaathan ()
Additional contact information
S. Anbazhagan: Periyar University
V. Ramesh: Jamsetji Tata School of Disaster Studies (JTSDS), Tata Institute of Social Sciences (TISS)
S. E. Saranaathan: SASTRA University

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2017, vol. 86, issue 3, No 5, 1104 pages

Abstract: Abstract In the present study, cut slope stability assessment along ghat road section of Kolli hills was carried out by using various geotechnical parameters of rock and soil slope sections and structural kinematics of major discontinuities is presented. The rock slope (RS) stability assessment was carried out using Rock Mass Rating basic (RMRbasic) and Slope Mass Rating (SMR) classification systems. The type of failure and their Factor of Safety (FOS) for individual RS was calculated using Hoek and Bray method. In the case of soil slopes (SS), the FOS was calculated using Circular Failure Chart (CFC) and Limit Equilibrium (LE) methods. The input data for the slope stability analyses were collected through extensive field work followed by stereonet plotting and laboratory test. There are six rock slope sections, and five soil slope sections were taken into consideration for the cut slope stability analyses. The area depicts class II (RS-1, 2, & 6) and class III (RS-3, 4, & 5) of RMR classes. The SMR result depicts for RS-1, RS-2, and RS-6 are 64.40, 60.02, and 60.70, respectively, and falls in class II stable condition. The SMR values of RS-3 and RS-5 were 44.33 and 57, respectively, and come under the class III partially stable condition. The RS-4 with SMR value of 17.33 falls under the class I completely unstable condition. The FOS of planar failure case indicates that RS-3 (FOS = 0.22) is more unstable, while all other sections are having greater than 1 FOS. The calculated FOS values using CFC method reveals that the FOS is very close to 1 for all the SS sections that fall under completely saturated condition which indicates that these slope sections may fail during heavy rainfall. In LE method, the sections SS-3 and SS-4 are unsafe under partially and completely saturated (natural slope) condition. In average slope condition, all the SS sections are unsafe under partially or completely saturated conditions. The facets 2, 3, 4, and 5 required mitigation measures, to improve the stability of slopes. Site-specific mitigation measures were suggested for partially or completely unstable rock and soil cut slopes.

Keywords: Cut slope stability; Rock mass rating (RMR); Slope mass rating (SMR); Factor of safety (FOS); Circular failure chart (CFC); Limit equilibrium (LE) method; Kolli hills (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://link.springer.com/10.1007/s11069-016-2731-0 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:86:y:2017:i:3:d:10.1007_s11069-016-2731-0

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069

DOI: 10.1007/s11069-016-2731-0

Access Statistics for this article

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk

More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:nathaz:v:86:y:2017:i:3:d:10.1007_s11069-016-2731-0