Use of sacrificial embankments to minimize bridge damage from scour during extreme flow events
Matthew W. Brand (),
Mandar M. Dewoolkar () and
Donna M. Rizzo ()
Additional contact information
Matthew W. Brand: The University of Vermont
Mandar M. Dewoolkar: The University of Vermont
Donna M. Rizzo: The University of Vermont
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2017, vol. 87, issue 3, No 11, 1469-1487
Abstract:
Abstract The leading cause of bridge failure has often been identified as bridge scour, which is generally defined as the erosion or removal of streambed and/or bank material around bridge foundations due to flowing water. These scour critical bridges are particularly vulnerable during extreme flood events, and pose a major risk to human life, transportation infrastructure, and economic sustainability. Retrofitting the thousands of undersized and scour critical bridges to more rigorous standards is prohibitively expensive requiring effective yet economical countermeasures. This research tested the efficacy of using approach embankments as intentional sacrificial “fuses” to protect the bridge integrity and minimize damage during large flow events by allowing the streams to access their natural floodplain and reduce channel velocities. This countermeasure concept was evaluated using the Hydrologic Engineering Center’s River Analysis System models. Steady flow models were developed for three specific bridges on two river reaches. Streamflow return period estimators for both river reaches were developed using Bayesian analysis and available United States Geological Survey stream gauge data to evaluate sacrificial embankments under non-stationary climatic conditions. The use of sacrificial embankments was determined to be a cost-effective scour mitigation strategy for bridges with suboptimal hydraulic capacity and unknown or shallow foundations. Additional benefits of sacrificial embankments include reductions in upstream flood stage and velocity.
Keywords: Bridge; Sacrificial embankment; Fuse; Climate change; Non-stationarity; Flooding; Tropical Storm Irene (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s11069-017-2829-z Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:87:y:2017:i:3:d:10.1007_s11069-017-2829-z
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069
DOI: 10.1007/s11069-017-2829-z
Access Statistics for this article
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk
More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().