The effects of natural structure on estimated tropical cyclone surge extremes
Donald T. Resio (),
Taylor G. Asher and
Jennifer L. Irish
Additional contact information
Donald T. Resio: University of North Florida
Taylor G. Asher: University of North Carolina
Jennifer L. Irish: Virginia Tech
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2017, vol. 88, issue 3, No 15, 1609-1637
Abstract:
Abstract The past 12 years have seen significant steps forward in the science and practice of coastal flood analysis. This paper aims to recount and critically assess these advances, while helping identify next steps for the field. This paper then focuses on a key problem, connecting the probabilistic characterization of flood hazards to their physical mechanisms. Our investigation into the effects of natural structure on the probabilities of storm surges shows that several different types of spatial-, temporal-, and process-related organizations affect key assumptions made in many of the methods used to estimate these probabilities. Following a brief introduction to general historical methods, we analyze the two joint probability methods used in most tropical cyclone hazard and risk studies today: the surface response function and Bayesian quadrature. A major difference between these two methods is that the response function creates continuous surfaces, which can be interpolated or extrapolated on a fine scale if necessary, and the Bayesian quadrature optimizes a set of probability masses, which cannot be directly interpolated or extrapolated. Several examples are given here showing significant impacts related to natural structure that should not be neglected in hazard and risk assessment for tropical cyclones including: (1) differences between omnidirectional sampling and directional-dependent sampling of storms in near coastal areas; (2) the impact of surge probability discontinuities on the treatment of epistemic uncertainty; (3) the ability to reduce aleatory uncertainty when sampling over larger spatial domains; and (4) the need to quantify trade-offs between aleatory and epistemic uncertainties in long-term stochastic sampling.
Keywords: Storm surges; Probabilities; Tropical cyclone hazards; Surge extremes (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://link.springer.com/10.1007/s11069-017-2935-y Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:88:y:2017:i:3:d:10.1007_s11069-017-2935-y
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069
DOI: 10.1007/s11069-017-2935-y
Access Statistics for this article
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk
More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().