Observational perspective of SST changes during life cycle of tropical cyclones over Bay of Bengal
Praveen Kumar Pothapakula,
Krishna K. Osuri,
Sujata Pattanayak,
U. C. Mohanty (),
Sourav Sil and
Raghu Nadimpalli
Additional contact information
Praveen Kumar Pothapakula: Indian Institute of Technology Bhubaneswar
Krishna K. Osuri: National Institute of Technology Rourkela
Sujata Pattanayak: Indian Institute of Technology Bhubaneswar
U. C. Mohanty: Indian Institute of Technology Bhubaneswar
Sourav Sil: Indian Institute of Technology Bhubaneswar
Raghu Nadimpalli: Indian Institute of Technology Bhubaneswar
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2017, vol. 88, issue 3, No 23, 1769-1787
Abstract:
Abstract Sea surface temperature (SST) plays a significant role in tropical cyclone (TC) formation and intensity evolution, while at the same time, TC induces SST changes during its life cycle. This work deals with the TC-induced SST changes associated with 21 TCs of Bay of Bengal (BoB) during 2006–2013. The SST analyses obtained from National Centre for Oceanic Information Services (INCOIS-SST) and real-time global SST (RTG-SST) are used along with buoy observations. Initial analyses reveal that INCOIS-SST is consistently better than RTG-SST with a good correlation and least root-mean-square error for both post- and pre-monsoon seasons. Overall results demonstrated that mean SST cooling decreases with increased translation speed of TCs within a radius of 50, 100 and 200 km from its centre. Further, a maximum SST cooling of ~2 and ~1.8 °C is noticed in pre- and post-monsoon, respectively, within the radial distance of 50–100 km from centre for slow-moving TCs, 1.2 and 1.0 °C for moderate and 0.9 and 0.7 °C for fast-moving TCs. The TCs formed over the southern BoB have a greater SST cooling up to 200 km radial distance followed by those formed over central and northern BoB in pre- and post-monsoon; however, the magnitudes of cooling in pre-monsoon seasons are greater than post-monsoon season. The minimum cooling over northern BoB may be attributed to the strong haline stratification as compared to the central and southern BoB during both seasons. However, there is a higher magnitude of stratification in post- compared to pre-monsoon, which might play a significant role in lesser SST cooling in post-monsoon season compared to pre-monsoon season.
Keywords: Tropical cyclones; Sea surface temperature; Bay of Bengal; Post-monsoon; Pre-monsoon (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s11069-017-2945-9 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:88:y:2017:i:3:d:10.1007_s11069-017-2945-9
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069
DOI: 10.1007/s11069-017-2945-9
Access Statistics for this article
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk
More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().