Integer nonlinear programming and optimized weighted-average approach for mobile hotel recommendation by considering travelers’ unknown preferences
Yu-Cheng Lin (),
Toly Chen () and
Li-Chih Wang
Additional contact information
Yu-Cheng Lin: Overseas Chinese University
Toly Chen: National Chiao Tung University
Li-Chih Wang: Tunghai University
Operational Research, 2018, vol. 18, issue 3, No 4, 625-643
Abstract:
Abstract The existing mobile hotel recommendation systems are usually subject to a difficult problem—travelers choose dominated hotels. This problem is difficult to resolve because there is no reason to recommend a hotel that is inferior to another in all aspects. To address this problem, an artificial dimension is added to each hotel to model unknown personal preferences. The possible values along the artificial dimension and the weight associated with it are derived by solving an integer nonlinear programming problem. Thus, the proposed methodology hybridizes objective and subjective weights. An illustrative example is provided to show the applicability of the proposed methodology. In addition, a field study was conducted in a small region of Seatwen District, Taichung City, Taiwan to evaluate the possible advantages of the proposed methodology over existing methods. The experimental results showed that the proposed methodology outperformed five existing methods in improving the successful recommendation rate, with the most significant advantage being up to 33 %. Furthermore, the recommendation results generated using the proposed methodology were found to be less risky.
Keywords: Hotel; Recommendation; Integer nonlinear programming; Dominated solution (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://link.springer.com/10.1007/s12351-016-0270-9 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:operea:v:18:y:2018:i:3:d:10.1007_s12351-016-0270-9
Ordering information: This journal article can be ordered from
https://www.springer ... search/journal/12351
DOI: 10.1007/s12351-016-0270-9
Access Statistics for this article
Operational Research is currently edited by Nikolaos F. Matsatsinis, John Psarras and Constantin Zopounidis
More articles in Operational Research from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().