An extensive search algorithm to find feasible healthy menus for humans
F. Martos-Barrachina (),
L. Delgado-Antequera,
M. Hernández and
R. Caballero
Additional contact information
F. Martos-Barrachina: Universidad de Málaga
L. Delgado-Antequera: Universidad de Málaga
M. Hernández: Universidad de Málaga
R. Caballero: Universidad de Málaga
Operational Research, 2022, vol. 22, issue 5, No 18, 5267 pages
Abstract:
Abstract Promoting healthy lifestyles is nowadays a public priority among most public entities. The ability to design an array of nutritious and appealing diets is very valuable. Menu Planning still presents a challenge which complexity derives from the problems’ many dimensions and the idiosyncrasies of human behavior towards eating. Among the difficulties encountered by researchers when facing the Menu Planning Problem, being able of finding a rich feasible region stands out. We consider it as a system of inequalities to which we try to find solutions. We have developed and implemented a two-phase algorithm -that mainly stems from the Randomized Search and the Genetic- that is capable of rapidly finding an pool of solutions to the system with the aim of properly identifying the feasible region of the underlying problem and proceed to its densification. It consists of a hybrid algorithm inspired on a GRASP metaheuristic and a later recombination. First, it generates initial seeds, identifying best candidates and guiding the search to create solutions to the system, thus attempting to verify every inequality. Afterwards, the recombination of different promising candidates helps in the densification of the feasible region with new solutions. This methodology is an adaptation of other previously used in literature, and that we apply to the MPP. For this, we generated a database of a 227 recipes and 272 ingredients. Applying this methodology to the database, we are able to obtain a pool of feasible (healthy and nutritious) complete menus for a given D number of days.
Keywords: Multi-criteria programming; Heuristic integer programming; Algorithms; Menu planning problem; Inequality system (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s12351-022-00702-4 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:operea:v:22:y:2022:i:5:d:10.1007_s12351-022-00702-4
Ordering information: This journal article can be ordered from
https://www.springer ... search/journal/12351
DOI: 10.1007/s12351-022-00702-4
Access Statistics for this article
Operational Research is currently edited by Nikolaos F. Matsatsinis, John Psarras and Constantin Zopounidis
More articles in Operational Research from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().